
THE GENERATING FIELDS OF TWISTED KLOOSTERMAN
SUMS

SHENXING ZHANG

Abstract. We use the Kloosterman sheaves constructed by Fisher to show
when two twisted Kloosterman sums differ by a factor of a (q − 1)-th root of
unity, and use p-adic analysis to prove the non-vanishing of twisted Klooster-
man sums. Then we determine generating fields of twisted Kloosterman sums
by these results.

1. Introduction

1.1. Background. Let p be a prime number, q = pd a power of p, and Fq the
field with q elements. Denote by µn ⊆ Q× the group of n-th roots of unity. Let
ψ : Fp → µp be a fixed non-trivial additive character. For χ = {χ1, . . . , χn} an
unordered n-tuple of multiplicative characters χi : F×

q → µq−1 and a ∈ F×
q , define

the Kloosterman sum as
Kln(ψ,χ, q, a) =

∑
x1···xn=a
xi∈F×

q

χ1(x1) · · ·χn(xn)ψ
(
Tr(x1 + · · ·+ xn)

)
,

where Tr = TrFq/Fp
. Clearly it lies in Z[µp(q−1)].

When χ = 1 = {1, · · · , 1} is trivial, the distinctness of Kloosterman sums is
studied by many peoples. It’s easy to see that

a, b conjugate =⇒ Kln(ψ,1, q, a) = Kln(ψ,1, q, b).

Fisher in [Fis92, Remark 4.28(2)] conjectured that the converse
(1.1) Kln(ψ,1, q, a) = Kln(ψ,1, q, b) =⇒ a, b conjugate
is also true if p ≥ nd. It’s known that (1.1) holds when p > (2n2d + 1)2 in [Fis92],
or p ≥ (d−1)n+2 and p does not divide a certain integer in [Wan95, Theorem 1.3].
Once (1.1) holds, one can obtain that Kln(ψ,1, q, a) generates Q(µp)

H , where

H =
{
t ∈ Gal

(
Q(µp)/Q

) ∣∣∣ ∃k ∈ Z such that tn = a1−p
k
}
.

1.2. Notations and main results. In this article, we will study the generating
fields of twisted Kloosterman sums. We need the following notations:

• c = c(χ) | (q−1) the minimal positive integer such that χci = 1, i = 1, . . . , n,
i.e., the least common multiplier of orders of χi.

• χw := {χw1 , · · · , χwn }, where w ∈ Z or Z/cZ.
• χη := {χ1η, · · · , χnη}, where η is a multiplicative character.
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• χ ◦ σ := {χ1 ◦ σ, · · · , χn ◦ σ}, where σ ∈ Gal(Fq/Fp).
•
∏

χ := χ1 · · ·χn.
Clearly, the Galois group

Gal
(
Q(µpc)/Q

)
=
{
σtτw

∣∣∣ t ∈ (Z/pZ)×, w ∈
(
Z/cZ

)×}
,

where
σt(ζp) = ζtp, σt(ζc) = ζc, τw(ζp) = ζp, τw(ζc) = ζwc

for any ζp ∈ µp, ζc ∈ µc.

Theorem 1.1. Assume that p > max
{
(2n2d + 1)2, (3n− 1)c− n

}
and for any i, j,

χi = χj if χni = χnj . Then Kln(ψ,χ, q, a) generates Q(µpc)
H , where H consists of

those σtτw such that there exists an integer k and a character η satisfying

tn = a1−p
k

, χw = χp
k

η, η(a) =
∏

χw(t).

A basic observation tells that
σtτw Kln(ψ,χ, q, a) =

∏
χ(t)−w Kln(ψ,χ

w, q, atn).

To study the generating fields, we need to know when two twisted Kloosterman
sums differ by a factor of some λ ∈ µq−1. In § 2, we will recall the construction
of Kloosterman sheaves by Fisher and show when two twisted Kloosterman sums
differ by a factor of λ for sufficiently large p, see Theorem 2.7. We also need the
non-vanishing of twisted Kloosterman sums, which will be proved by p-adic analysis
in § 3. Then we will finish the proof in § 4 and end this paper with several examples
in § 5.

2. Kloosterman sheaves and Fisher’s descent

2.1. Kloosterman sheaves. Let ` 6= p be a prime and fix an embedding Qℓ ↪→ C.
Then the additive and multiplicative characters ψ, χi can take value both in Qℓ or
C.

Deligne in [Del77, Theorem 7.8] and Katz in [Kat88, Theorem 4.11] defined the
Kloosterman sheaf of Qℓ-modules

K` = K`n,q(ψ,χ)

on Gm/Fq
, with the following properties:

• K` is lisse of rank n and pure of weight n− 1.
• For any a ∈ F×

q , Tr(Froba,K`a) = (−1)n−1 Kln(ψ,χ, q, a).
• K` is tame at 0.
• K` is totally wild with Swan conductor 1 at ∞. So all ∞-breaks are 1/n.

Here Froba denotes the geometric Frobenius at a.

Definition 2.1. The n-tuple χ is called Kummer-induced if there exists a non-
trivial character Λ such that χ = χΛ as unordered n-tuples.

Remark 2.2. If χ is Kummer-induced, then
∏

χ =
∏
(χΛ) = Λn

∏
χ, Λn = 1.

Since
Kln(ψ,χη, q, a) = η(a)Kln(ψ,χ, q, a),

we have Kln(ψ,χ, q, a) = 0 if χ is Kummer-induced and Λ(a) 6= 1. See [Fis92,
Remark 1.6].
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Remark 2.3. When χ is not Kummer-induced, K` is not geometrically Kummer-
induced. That’s to say, K` | Gm/Fp

is not of type (t 7→ tN )∗F for some integer
N > 1 and some lisse sheaf F on Gm/Fp

. See [Fis92, Theorem 2.9].

2.2. Fisher’s descent. In [Fis92, Theorem 3.12], Fisher gave a descent of Kloost-
erman sheaves along an extension of finite fields. For any a ∈ F×

q , he defined a lisse
sheaf Fa(χ) on Gm = Gm/Fp

, such that

Fa(χ) | Gm/Fq
=

⊗
σ∈Gal(Fq/Fp)

(
t 7→ σ(a)tn

)∗ K`n,q(ψ ◦ σ−1,χ ◦ σ−1).

Moreover,
• Fa(χ) is lisse of rank nd and pure of weight d(n− 1).
• For any t ∈ F×

p , Tr
(
Frobt,Fa(χ)t

)
= (−1)(n−1)dKln(ψ,χ, q, at

n).
• Fa(χ) is tame at 0 and its ∞-breaks are at most 1.

2.3. Distinctness. We will consider when

Kln(ψ,χ, q, a) = λKln(ψ,ρ, q, b)

for some λ ∈ µq−1. The argument almost follows [Fis92], while λ = 1 in his paper.
For a lisse sheaf F on Gm, denote by Ggeom(F) the geometric monodromy group

of F , i.e., the Zariski closure of π1(Gm/Fp
) in GL(F). Let Ggeom(F)◦ be the

connected component of Ggeom(F) and g(F) its Lie algebra.

Proposition 2.4 ([Fis92, Proposition 4.18]). Assume that p > 2n+1 and χ is not
Kummer-induced.

(1) As a representation of g
(
Fa(χ)

)
, Fa(χ) has a highest weight λa(χ) with

multiplicity one.
(2) Fa(χ) has a geometrically irreducible sub-sheaf Ga(χ), such that as a rep-

resentation of g
(
Fa(χ)

)
, Ga(χ) is an irreducible sub-representation with

unique highest weight λa(χ). Moreover, Ga(χ) | Gm/Fp
occurs exactly once

in Fa(χ) | Gm/Fp
.

The multiplicative character χ can be viewed as a character on Fp-points of
B× = ResFq/Fp

Gm. It gives a rank one lisse sheaf on B× constructed from the
Lang torsor as in [Kat88, §4.3]. Denote by Lψ its restriction on Gm. Similarly,
the additive character ψ gives a rank one lisse sheaf on Ga/Fp

. Denote by Lψ its
restriction on Gm. For any t ∈ F×

p ,

Tr
(
Frobt, (Lχ)t

)
= χ(t), Tr

(
Frobt, (Lψ)t

)
= ψ(t).

Lemma 2.5 ([Fis92, Lemma 4.9]). Let F ,F ′ be lisse sheaves on Gm of same rank
r and pure of the same weight w. Assume that for any t ∈ F×

p ,

Tr(Frobt,Ft) = Tr(Frobt,F ′
t).

Let G be a geometrically irreducible sheaf of rank s on Gm, pure of weight w, such
that G | Gm/Fp

occurs exactly once in F | Gm/Fp
. Then G | Gm/Fp

occurs at least
once in F ′ | Gm/Fp

, provided that p >
(
2rs(M0 +M∞) + 1

)2, where Mη is the
largest η-break of F ⊕ F ′.
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Proposition 2.6 ([Fis92, Corollary 4.20]). Let a, b ∈ F×
q and let χ,ρ be n-tuples of

multiplicative characters χi, ρj : F×
q → Q×

ℓ respectively. Assume that p > (2n2d +

1)2, χ is not Kummer-induced and there is λ ∈ µq−1 such that

Kln(ψ,χ, q, a) = λKln(ψ,ρ, q, b).

Then Ga(χ)⊗ L∏
χ | Gm/Fp

occurs at least once in Fb(ρ)⊗ L∏
ρ | Gm/Fp

.

Proof. Denote by

F = Fa(χ)⊗ L∏
χ, F ′ = Fb(ρ)⊗ L∏

ρ, G = Ga(χ)⊗ L∏
χ.

For any t ∈ F×
p , we have σtλ = λ. Since

σt
(
Kln(ψ,χ, q, a)

)
=
∏

χ(t) ·Kln(ψ,χ, q, at
n) = (−1)(n−1)d Tr(Frobt,Ft),

σt
(
Kln(ψ,ρ, q, b)

)
=
∏

ρ(t) ·Kln(ψ,ρ, q, bt
n) = (−1)(n−1)d Tr(Frobt,F ′

t
),

we have Tr(Frobt,Ft) = λTr(Frobt,F ′
t
).

Let V = Qℓ · e with Frobp ·e = λe, where Frobp ∈ Gal(Fp/Fp) denotes the
geometric Frobenius. Denote by L0 the sheaf on SpecFp corresponding to this
module and let L be its pulling-back along Gm → SpecFp. Then for any t ∈ F×

p ,

Tr(Frobt,Lt) = Tr(Frobp,L0) = λ, Tr
(
Frobt, (F ′ ⊗ L)t

)
= Tr(Frobt,Ft).

Since L | Gm/Fp
is trivial, the result then follows by applying Lemma 2.5 to sheaves

F ,F ′ ⊗ L,G with r = s = nd,M0 = 0 and M∞ ≤ 1. □

Theorem 2.7. Let a, b ∈ F×
q and let χ,ρ be n-tuples of multiplicative charac-

ters. Assume that χ,ρ are not Kummer-induced and neither of them is of type{
ξ1, ξ

−1
1 , 1,Λ2

}
ξ2. If p > (2n2d + 1)2 and

Kln(ψ,χ, q, a) = λKln(ψ,ρ, q, b)

for some λ ∈ µq−1, then there exists σ ∈ Gal(Fq/Fp) and a multiplicative character
η, such that b = σ(a) and ρ = (χ ◦ σ−1)η as unordered tuples. Moreover, either
both Kloosterman sums vanish or η(b) = λ−1.

Here, Λ2 denotes the non-trivial quadratic character of F×
q .

Proof. Denote by

H = K`n,q(ψ,χ) | Gm/Fp
and K = K`n,q(ψ,ρ) | Gm/Fp

.

By our assumptions, H and K are not Kummer-induced by [Fis92, Theorem 2.9].
By applying [Kat90, Theorems 8.8.1, 8.11.3] with n = 4,m = 0, we obtain that

Ggeom(H)◦ = SO(4) if and only if there is a multiplicative character η such that
χ = χη = χ−1η as unordered 4-tuples and

∏
χ = Λ2η

2. In which case, there is a
permutation ε ∈ S4 such that χiχε(i) = η.

• If ε = 1, then χ2
i = η, χi = χ1 or χ1Λ2. Since

∏
χ = Λ2η

2, we have
χ = {1, 1, 1,Λ2}χ1 or {1, 1, 1,Λ2}χ1Λ2.

• If ε = (1234) or (12)(34), then χ1χ2 = χ3χ4 = η, which contradicts to∏
χ = Λ2η

2.
• If ε = (123), then χ1χ2 = χ2χ3 = χ3χ1 = η, χ1 = χ2 = χ3. Since∏

χ = Λ2η
2 = Λ2χ

4
1, we have χ4 = χ1Λ2 and χ = {1, 1, 1,Λ2}χ1.
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• If ε = (12), then χ1χ2 = η, χ2
3 = χ2

4 = η. Since
∏

χ = Λ2η
2, χ3χ4 = Λ2η =

Λ2χ
2
3, we have χ4 = Λ2χ3. Therefore,
χ = {χ1, χ

2
3χ

−1
1 , χ3, χ3Λ2} = {χ1χ

−1
3 , χ−1

1 χ3, 1,Λ2}χ3.

• The remaining cases can be discussed similarly.
Since the form of χ contradicts our assumptions, we have Ggeom(H)◦ 6= SO(4).
Similarly, Ggeom(K)◦ 6= SO(4).

The following argument follows from [Fis92, Theorem 4.22]. For a ∈ F×
p , denote

by Ta : t 7→ at a translation on Gm/Fp
and

Hσ := T ∗
σ(a)(H ◦ σ−1), Kτ := T ∗

τ(b)(K ◦ τ−1).

Let G be the geometric monodromy group of⊕
σ∈Gal(Fq/Fp)

Hσ ⊕
⊕

τ∈Gal(Fq/Fp)

Kτ ,

and g the Lie algebra of G◦. Since Ggeom(H) 6= SO(4), we have Ggeom(Hσ) 6= SO(4)
for any σ. This implies that g(Hσ) is simple. Let λσ (resp. µτ ) denote the highest
weight of Hσ (resp. Kτ ). Since

Fa(χ) | Gm/Fq
=

⊗
σ∈Gal(Fq/Fp)

(
t 7→ tn

)∗Hσ,

we have λa(χ) =
∑
σ λσ, λb(ρ) =

∑
τ µτ . By Proposition 2.6, we have

Ga(χ)⊗ L∏
χ | Gm/Fp

↪→ Fb(ρ)⊗ L∏
ρ | Gm/Fp

,

Gb(ρ)⊗ L∏
ρ | Gm/Fp

↪→ Fa(χ)⊗ L∏
χ | Gm/Fp

.

Since as representations of g, Ga(χ),Fa(χ) have the highest weight λa(χ), Gb(ρ),Fb(ρ)
have the highest weight λb(ρ), we have λa(χ) = λb(ρ). Since λσ, µτ are fundamen-
tal weights, this implies that there is a σ such that λσ = µ1. Therefore, Hσ

∼= K1

as representations of g, and Hσ ⊗ L ∼= K1 as sheaves on Gm/Fp
for some L. By

[Kat90, Lemma 8.11.7.1], L = Lη for some tame character η. Hence
T ∗
b K ∼= Lη ⊗ T ∗

σ(a)(H ◦ σ−1) = Lη ⊗ T ∗
σ(a) K`n,q(ψ,χ ◦ σ−1) | Gm/Fp

.

By [Fis92, Lemma 4.11], we have b = σ(a) and ρ = (χ◦σ−1)η as unordered tuples.
This implies that

Kln(ψ,ρ, q, b) = η(b)Kln(ψ,χ, q, a).

Hence both Kloosterman sums vanish or η(b) = λ−1. □
Remark 2.8. In [Fis92, Corollary 4.27], Fisher showed that if p > (2n4d + 1)2 and

|Kln(ψ,χ, q, a)| = |Kln(ψ,ρ, q, b)| ,
then b = σ(a),ρ = (χ ◦ σ−1)η, or b = (−1)nσ(a),ρ = (χ−1 ◦ σ−1)η.

Corollary 2.9. Keeping the hypotheses of Theorem 2.7. Assume that χ is defined
over Fp, that’s to say, χ = χ0 ◦NFq/Fp

for some n-tuple χ0 of characters on F×
p .

If
Kln(ψ,χ, q, a) = λKln(ψ,χ, q, b), λ ∈ µq−1,

then b = σ(a) for some σ ∈ Gal(Fq/Fp), and Kln(ψ,χ, q, a) = Kln(ψ,χ, q, b).

Proof. In this case, we have χ = χη and then η = 1. The result then follows
easily. □
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3. The non-vanishing of Kloosterman sums

The case n = 1 is trivial. We will assume that n ≥ 2 in this section.

Theorem 3.1. Assume that p > (3n−1)c−n and for any i, j, χi = χj if χni = χnj .
Then Kln(ψ,χ, q, a) is nonzero.

Proof. Let p be a prime above p in Q(µq−1) and P the unique prime above p in
Q(µ(q−1)p). Let v be the normalized P-adic valuation. Once we fix an isomorphism
from Fq to the residue field of Q(µq−1) at p, the Teichmüller lifting of the residue
map at p gives a primitive character ω of F×

q . Denote by

g(m) :=
∑
t∈F×

q

ω−m(t)ψ
(
Tr(t)

)
the Gauss sum. Then the Stickelberger’s congruence theorem tells that

(3.1) v
(
g(m)

)
=

d−1∑
j=0

mj ,

where

0 ≤ m ≤ q − 2, m =

d−1∑
j=0

mjp
j , 0 ≤ mj ≤ p− 1,

see [Sti90] or [Was97, Chapter 6].
For each i ∈ {1, 2, . . . , n}, there is si such that χi = ω−si . Take x = x1 · · ·xna−1

in the identity
q−2∑
m=0

ω−m(x) =

{
q − 1, if x = 1;

0, if x 6= 1,

we get

(q − 1)Kln(ψ,χ, q, a) =

q−2∑
m=0

ωm(a)

n∏
i=1

g(m+ si).

There is a unique m such that v
(∏n

i=1 g(m + si)
)

is minimal by Proposition 3.2.
This implies that Kln(ψ,χ, q, a) is nonzero. □

We may assume that 1 ≤ si ≤ q − 1 (notice the bound). Write

si =

d−1∑
j=0

sijp
j

with 0 ≤ sij ≤ p− 1.

Proposition 3.2. Assume that p > (3n − 1)c − n and for any i, j, χi = χj if
χni = χnj . Then there is a unique 0 ≤ m ≤ q − 2 such that v

(∏n
i=1 g(m + si)

)
is

minimal.

Proof. Since c(χχ−1
1 ) ≤ c(χ), we may assume that χ1 = 1, s1 = q−1 for simplicity.

Step 1: express the valuation in terms of mij and sij.
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For each i ∈ {1, 2, . . . , n}, let εi,−1 ∈ {0, 1} be the integer part of (m+si)/(q−1).
Then we may write

m+ si − (q − 1)εi,−1 =

d−1∑
j=0

mijp
j , 0 ≤ mij ≤ p− 1.

By the Stickelberger’s congruence theorem (3.1), we have

(3.2) v
( n∏
i=1

g(m+ si)
)
=

n∑
i=1

d−1∑
j=0

mij .

Note that

m+ si − (q − 1)εi,−1 =

d−1∑
j=0

(mj + sij)p
j − (q − 1)εi,−1.

For each j ∈ {0, 1, 2, . . . , d−1}, denote by εij the integer part of (mj+sij+εi,j−1)/p
inductively. Then εij ∈ {0, 1} and

d−1∑
j=0

(mj + sij + εi,j−1 − pεij)p
j

=m+ si + εi,−1 − qεi,d−1

=

d−1∑
j=0

mijp
j + q(εi,−1 − εi,d−1).

Since both the left-hand side and
∑d−1
j=0 mijp

j lie in the interval [0, q − 2], we have
mij = mj + sij + εi,j−1 − pεij

and εi,d−1 = εi,−1.

Step 2: express the valuation in terms of sσj(uj),j.
There exists a permutation σj ∈ Sn such that

(3.3) sσj(1),j ≥ sσj(2),j ≥ · · · ≥ sσj(n),j .

If sij = si′j , then by Lemma 3.3, χni = χni′ , χi = χi′ and εij = εi′j . If sij > si′j ,
then

sij + εi,j−1 ≥ si′j + εi′,j−1 and εij ≥ εi′j .

In other words, {εij}i and {sij + εi,j−1}i have the same orderings as (3.3). There-
fore, there exists 0 ≤ uj ≤ n such that

εσj(1),j = · · · = εσj(uj),j = 1, εσj(uj+1),j = · · · = εσj(n),j = 0.

This implies that
mσj(1),j ≥ · · · ≥ mσj(uj),j , mσj(uj+1),j ≥ · · · ≥ mσj(n),j .

Note that s1 = q − 1, s1j = p − 1 and ε1,−1 = 1. One can show that ε1,j = 1
inductively, which means uj 6= 0. If uj 6= n and mσj(uj),j ≥ mσj(n),j , then

0 ≥ sσj(uj),j + εσj(uj),j − p ≥ sσj(n),j + εσj(n),j ≥ 0,

which forces that
sσj(uj),j = p− 1, εσj(uj),j = 1, sσj(n),j = εσj(n),j = 0.
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By Lemma 3.3, this implies that χnσj(uj)
= χnσj(n)

. Then χσj(uj) = χσj(n) and
εσj(uj),j = εσj(n),j , which is impossible. Hence

m′
j := mσj(uj),j = mj + sσj(uj),j + εσj(uj),j−1 − p

is the unique minimum among {m1j ,m2j , . . . ,mnj}. Therefore, the valuation (3.2)
becomes∑

i,j

mij =
∑
i,j

(
mj + sij + εi,j−1 − pεij

)
=
∑
i,j

(
m′
j − sσj(uj),j − εσj(uj),j−1 + p+ sij + εi,j−1 − pεij

)
= ndp+

∑
j

(∑
i

sij + n
(
m′
j − sσj(uj),j − εσj(uj),j−1

)
+ uj−1 − puj

)
= ndp+

∑
i,j

sij + n
∑
j

(
m′
j − sσj(uj),j −

p− 1

n
uj − εσj(uj),j−1

)
.(3.4)

Here, u−1 :=
∑d
i=1 εi,−1 = ud−1.

Step 3: find the minimal valuation.
If ∣∣∣(sσj(i),j +

p− 1

n
i
)
−
(
sσj(i′),j +

p− 1

n
i′
)∣∣∣ ≤ 1,

then by Lemma 3.3, χnσj(i)
= χnσj(i′)

, χσj(i) = χσj(i′), sσj(i),j = sσj(i′),j . This
implies that i = i′ because (p− 1)/n > 1. Therefore, there exists a unique Uj such
that

sσj(Uj),j +
p− 1

n
Uj = max

1≤i≤n

{
sσj(i),j +

p− 1

n
i

}
.

Moreover,

(3.5) sσj(Uj),j +
p− 1

n
Uj > sσj(i),j +

p− 1

n
i+ 1

for any i 6= Uj .
Write

Eσj(1),j = · · · = Eσj(Uj),j = 1, Eσj(Uj+1),j = · · · = Eσj(n),j = 0.

If m is

M =

d−1∑
j=0

Mjp
j , where Mj = p− sσj(Uj),j − Eσj(Uj),j−1,

then m′
j = 0, εij = Eij and uj = Uj . Denote by V the corresponding valuation

(3.2) for m =M .
If all uj = Uj , then εij = Eij and∑

i,j

mij = V + n
∑
j

m′
j ≥ V.

The equality holds if and only if all m′
j = 0, i.e., m = M . If there exists j such

that uj 6= Uj , then by (3.4) and (3.5), we have
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1

n

(∑
i,j

mij − V
)

=
∑
j

(
m′
j − sσj(uj),j −

p− 1

n
uj − εσj(uj),j−1

)
−
∑
j

(
−sσj(Uj),j −

p− 1

n
Uj − Eσj(Uj),j−1

)
≥
∑
j

(
sσj(Uj),j +

p− 1

n
Uj − sσj(uj),j −

p− 1

n
uj + Eσj(Uj),j−1 − εσj(uj),j−1

)
≥
∑
uj ̸=Uj

(
sσj(Uj),j +

p− 1

n
Uj − sσj(uj),j −

p− 1

n
uj − 1

)
> 0.

Hence the valuation (3.2) is minimal if and only if m =M . □

Lemma 3.3. Assume that p > (3n − 1)c − n. If χni 6= χni′ , then for each j, there
is no integer 0 ≤ α ≤ n such that |sij − si′j − p−1

n α| ≤ 1.

Proof. There exist integers r, r′ such that

si =
(q − 1)r

c
, si′ =

(q − 1)r′

c
.

Then

sij =
aj+1p− aj

c
, si′j =

a′j+1p− a′j
c

,

where aj ≡ rp−j , a′j ≡ r′p−j mod c with 1 ≤ aj , a
′
j ≤ c. Let a′′j := aj − a′j . Then

|a′′j | ≤ c− 1.
If

p− 1

n
α+ t = sij − si′j =

a′′j+1p− a′′j
c

for an integer 0 ≤ α ≤ n and a real number t with |t| ≤ 1, then(
na′′j+1 − αc

)
p = na′′j − αc+ nct.

There are three cases:
• If na′′j+1 − αc 6= 0 and α = n, then a′′j+1 6= c,

p ≤ |(a′′j+1 − c)p| = |a′′j − c+ ct| ≤ 3c− 1 ≤ (3n− 1)c− n

since n ≥ 2.
• If na′′j+1 − αc 6= 0 and α < n, then

p ≤
∣∣na′′j − αc+ nct

∣∣ ≤ n(c− 1) + c(n− 1) + nc ≤ (3n− 1)c− n.

• If na′′j+1−αc = 0, then n(r−r′) ≡ n(aj+1−a′j+1)p
j+1 = αcpj+1 ≡ 0 mod c.

That is to say, χni = χni′ .
These finish the proof. □

Remark 3.4. When n = 2, p > 3c−2 is enough by a careful estimation. See [Zha21,
Lemma 3.4, Proposition 3.6].
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4. Proof of the main theorem

Theorem 4.1. Assume that p > max
{
(2n2d + 1)2, (3n− 1)c− n

}
and for any i, j,

χi = χj if χni = χnj . Then Kln(ψ,χ, q, a) generates Q(µpc)
H , where H consists of

those σtτw such that there exists an integer k and a character η satisfying

tn = a1−p
k

, χw = χp
k

η, η(a) =
∏

χw(t).

Proof. Note that if χ is Kummer-induced, then there is a non-trivial character Λ
such that χ = χΛ and Λn = 1. Thus there exists i 6= j such that χi = χjΛ and
χni = χnj , which contradicts to our assumptions. Certainly, χ = (ξ1, ξ

−1
1 , 1,Λ2)ξ2 is

also impossible.
By Theorems 2.7, 3.1 and the fact that

σtτw Kln(ψ,χ, q, a) =
∏

χ−w(t)Kln(ψ,χ
w, q, atn),

we have that σtτw fixes Kln(ψ,χ, q, a) if and only if

atn = σ(a), χw = (χ ◦ σ−1)η, η
(
σ(a)

)
=
∏

χw(t)

for some σ ∈ Gal(Fq/Fp) and character η. Write σ(x) = xp
−k . Since tp = t, we

have
tn = tnp

k

=
(
σ(a)/a

)pk
= a1−p

k

,

η(a) = η
(
σ(a)

)pk
=
∏

χw(tp
k

) =
∏

χw(t)

and χw = χp
k

η. □

Remark 4.2. Denote by α = gcd(k, d) and λ := ap
α−1. Since the order of a divides

gcd
(
(pk − 1)(p− 1), pd− 1

)
= (pα− 1) gcd

(
p− 1,

pd − 1

pα − 1

)
= (pα− 1) gcd

(
p− 1,

d

α

)
,

we have λd/α = 1. If λ 6= 1, then

Tr(a) =
(
1 + λ+ · · ·+ λ

d
α−1

)
·
(
a+ ap + · · ·+ ap

α−1)
= 0.

Hence, Tr(a) 6= 0 implies that λ = 1, tn = a1−p
k

= 1. If moreover χ = 1, then

H =
{
t ∈ Gal

(
Q(µp)/Q

) ∣∣ tn = 1
}
.

In fact, this holds for any p, see [Wan95]. See also [KRV11] for an attempt on a
weaker condition.

Remark 4.3. Consider the Kloosterman sums

Sm = Kl(ψ,χ ◦NFqm/Fq
, qm, a).

The L-function

L(T ) = exp

( ∞∑
m=1

Tm

m
Sm

)
is a rational function over Q(µp(q−1)) by the Dwork-Bombieri-Grothendick rational-
ity theorem. Thus the sequence {Sm}m is a linear recurrence sequence. As shown
in [WY20, Theorem 3], the sequence {Q(Sm)}m≥N is periodic of period r for some
r,N .
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Assume that for any i, j, χi = χj if χni = χnj . By Theorem 1.1, if p >

max
{
(2n2dm + 1)2, (3n− 1)c− n

}
, then Q(Sm) = Q(µpc)

H , where H consists of
those σtτw such that there exists an integer k and a character η on F×

q satisfying

(4.1) tn = a1−p
k

, χw = χp
k

η, η(a) = γ ·
∏

χw(t) with γm = 1.

Hence Q(Sm) = Q(Sm−c) since γc = 1.
If p > max

{(
2n2d(N+r) + 1

)2
, (3n− 1)c− n

}
, then the generating field of Sm is

determined by (4.1) for any m. But unfortunately, we do not have a bound on N .
We roughly guess that Sm has the predicted generating field if p > 3ndc.

5. Examples

Denote by n0 := (n, p− 1), d0 the degree of a(1−p)/n0 and

a0 := NF
pd0

/Fp

(
a(1−p)/n0

)
= a(1−p

d0 )/n0 .

Since (
a(1−p)/n0

)pk−1
= t(p−1)n/n0 = 1,

we have k = d0β for some integer β. Moreover,

tn = a1−p
k

= a
n0(1−pk)/(1−pd0 )
0 = an0β

0 .

5.1. The case n = 2.

Proposition 5.1. Let χ = {1, χ}, where χ is a multiplicative character of order
c 6= 2. If p > max

{
(22d+1 + 1)2, 5c− 2

}
, then Kl(ψ,χ, pd, a) generates Q(µpc)

H ,
where

H =



〈τq0σa0 , σ−1, τ−1〉, if χ(−1) = 1, χ(a) = 1;

〈τ−q0σa0 , σ−1〉, if χ(−1) = 1, χ(a) = χ(a0) = −1;

〈τqα0 σaα0 , σ−1〉, if χ(−1) = 1, χ(a)α 6= 1;

〈τq0σ−a0 , τ−1σ−1〉, if χ(−1) = −1, χ(a) = χ(a0) = −1;

〈τq0σa0 , τ−1〉, if χ(−1) = −1, χ(a) = 1;

〈τq0σa0 , τ−1σ−1〉, if χ(−1) = −1, χ(a) = −1, χ(a0) = 1;

〈τ
q
α/2
0
σ−aα/2

0
〉, if χ(−1) = −1, 2 | α, χ(a) 6= ±1;

〈τqα0 σaα0 〉, if χ(−1) = −1, 2 ∤ α, χ(a) 6= ±1.

is a subgroup of Gal
(
Q(µpc)/Q

)
, q0 = #Fp(a(1−p)/2), a0 = a(1−q0)/2 ∈ F×

p and α is
the order of χ(a0) ∈ µp−1.

Proof. As remarked above, k = d0β and t2 = a2β0 for some integer β, where q0 = pd0 .
Hence t = ±aβ0 and

χw = {1, χw} = χq
β
0 η =

{
η, ηχq

β
0

}
, η(a) = χw(t).

There are two cases:
(i) If η = 1, χw = χq

β
0 , then w ≡ qβ0 mod c and

1 = η(a) = χw(t) = χ(t) = χ(±aβ0 ).
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(ii) If η = χw, ηχq
β
0 = 1, then w ≡ −qβ0 mod c. Since χw(a) = η(a) = χw(t),

we have χ(a) = χ(t) = χ(±aβ0 ). Since a0 = a(1−q0)/2 ∈ F×
p , we have

χ(a0)
2 = χ(a)1−q0 = χ(a0)

(1−q0)β = 1.

Thus χ(a0) = ±1 and α = 1 or 2.
The case χ(−1) = 1.

(i) β = αm for some m and w ≡ qαm0 , t = ±aαm0 .
(ii) If α = 1, χ(a0) = χ(a) = 1, then w ≡ −qm0 , t = ±am0 ; if α = 2, χ(a0) =

χ(a) = −1, then w ≡ −q1+2m
0 , t = ±a1+2m

0 .
The case χ(−1) = −1 and 2 | α.

(i) w ≡ qαm0 , t = aαm0 or w ≡ q
α(m+1/2)
0 , t = −aα(m+1/2)

0 .
(ii) α = 2, χ(a) = χ(a0) = −1. Then w ≡ −q1+2m

0 , t = a1+2m
0 or w ≡ −q2m0 , t =

−a2m0 .
The case χ(−1) = −1 and 2 ∤ α.

(i) w ≡ qαm0 , t = aαm0 .
(ii) α = 1 and χ(a0) = 1. If χ(a) = 1, then w ≡ −qm0 , t = am0 ; if χ(a) = −1,

then w ≡ −qm0 , t = −am0 . □

Example 5.2. If a ∈ F×
p , then q0 = p, α = 1 or 2. One can easily obtain that

H =



〈τp, τ−1, σ−1〉, if χ(−1) = 1 and χ(a) = 1;

〈τp, σ−1〉, if χ(−1) = 1 and χ(a) = −1;

〈τp, τ−1〉, if χ(−1) = −1 and χ(a) = 1;

〈τp, τ−1σ−1〉, if χ(−1) = −1 and χ(a) = −1;

〈τp〉, if χ(−1) = −1 and χ(a) 6= ±1.

This drops the combinatorial condition on (p, d) and the non-vanishing condition
on Tr(a) in [Zha21, Theorems 1.1, 1.3], while we require that p is large with respect
to d.

Remark 5.3. Assume that χ = Λ2. If Λ2(a) 6= 1, then the Kloosterman sum
vanishes. If Λ2(a) = 1 and Tr(

√
a) 6= 0, then the Kloosterman sum generates

Q(µp)
+ if χ(−1) = 1; Q(µp) if χ(−1) = −1. See [Zha21, Theorem 1.1(1)].

5.2. The upper bound of the generating field. If η = 1, then χwi = χ
qβ0
i . Thus

w ≡ qβ0 mod c. Denote by
α := min

{
α ∈ Z>0

∣∣ ∃t0 ∈ F×
p such that tn0 = an0α

0 ,
∏

χ(t0) = 1
}
.

Write β = αs+ r, 0 ≤ r < α. Then
(tt−s0 )n = an0β−n0αs

0 = an0r
0 ,

∏
χ(tt−s0 ) = 1.

This forces r = 0 and t = λts0 with λn = 1,
∏

χ(λ) = 1. Hence
H ⊇ H0 :=

〈
τqα0 σt0 , σλ | λn = 1,

∏
χ(λ) = 1

〉
and Kl(ψ,χ, q, a) ∈ Q(µpc)

H0 . This gives an upper bound of the degree of Kl(ψ,χ, q, a).

Example 5.4. Denote by m(ξ) the multiplicity of ξ in the n-tuple χ. Assume that
there exists a character ξ such that m(ξ) 6= m(ξ′) for any ξ′ 6= ξ. Then one can
easily show that η = 1 and H = H0.
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